Research
Epitranscriptomics & Cancer Adaptation : A.David

Activities

Our research work focuses on the contribution of post-transcriptional mechanisms on cancer cell adaptation, in particular RNA epigenetic & translational control.

More..

Zotero public

Added by mollevi
Last modified by llecam
Group name EquipeLLC
Item Type Journal Article
Title Description of an optimized ChIP-seq analysis pipeline dedicated to genome wide identification of E4F1 binding sites in primary and transformed MEFs
Creator Houles et al.
Author T. Houles
Author G. Rodier
Author L. Le Cam
Author C. Sardet
Author O. Kirsh
Abstract This Data in Brief report describes the experimental and bioinformatic procedures that we used to analyze and interpret E4F1 ChIP-seq experiments published in Rodier et al. (2015) [10]. Raw and processed data are available at the GEO DataSet repository under the subseries # GSE57228. E4F1 is a ubiquitously expressed zinc-finger protein of the GLI-Kruppel family that was first identified in the late eighties as a cellular transcription factor targeted by the adenoviral oncoprotein E1A13S (Ad type V) and required for the transcription of adenoviral genes (Raychaudhuri et al., 1987) [8]. It is a multifunctional factor that also acts as an atypical E3 ubiquitin ligase for p53 (Le Cam et al., 2006) [2]. Using KO mouse models we then demonstrated that E4F1 is essential for early embryonic development (Le Cam et al., 2004), for proliferation of mouse embryonic cell (Rodier et al., 2015), for the maintenance of epidermal stem cells (Lacroix et al., 2010) [6], and strikingly, for the survival of cancer cells (Hatchi et al., 2007) [4]; (Rodier et al., 2015) [10]. The latter survival phenotype was p53-independent and suggested that E4F1 was controlling a transcriptional program driving essential functions in cancer cells. To identify this program, we performed E4F1 ChIP-seq analyses in primary Mouse Embryonic Fibroblasts (MEF) and in p53(-/-), H-Ras(V12)-transformed MEFs. The program directly controlled by E4F1 was obtained by intersecting the lists of E4F1 genomic targets with the lists of genes differentially expressed in E4F1 KO and E4F1 WT cells (Rodier et al., 2015). We describe hereby how we improved our ChIP-seq analyses workflow by applying prefilters on raw data and by using a combination of two publicly available programs, Cisgenome and QESEQ.
Publication Genom Data
Volume 5
Pages 368-70
Date Sep 2015
Journal Abbr Genomics data
DOI 10.1016/j.gdata.2015.07.004
ISSN 2213-5960 (Electronic) 2213-5960 (Linking)
Tags original, top
Date Added 2018/11/14 - 11:59:48
Date Modified 2021/09/03 - 16:07:23
Notes and Attachments (Note)
(Note)
26484288 (Attachment)


© Institut de Recherche en Cancérologie de Montpellier - 2011 - Tous droits réservés - Mentions légales - Connexion - Conception : ID Alizés